If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+18x+9=0
a = 6; b = 18; c = +9;
Δ = b2-4ac
Δ = 182-4·6·9
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{3}}{2*6}=\frac{-18-6\sqrt{3}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{3}}{2*6}=\frac{-18+6\sqrt{3}}{12} $
| -9h-6=-10h | | 26=7(g+12 | | 2x+6=-2+3x | | -9h−6=-10h | | 7s=6s+2 | | -(x+3+3/4x+5=0 | | 6*x+2=9+7*x | | 9(2-k)=3(k-9) | | (7(4w+7))/5=3 | | 80y+50=100 | | 2/3n+1=3/5n | | 6·x+2=9+7·x | | x=x=2/4 | | -5/9u=-35 | | 2+6*x=4*x=20 | | 2v-18=12-4(v+7) | | 7x^2-19+10=0 | | x+11=3x=1 | | -4.1=w/6+15.1 | | x^2+50x+7200=0 | | 2-(2x-4)=4 | | 4(2n+4)=10n-2 | | x/3=10=-12 | | -4+2x=-16+23 | | 10-6(x+1)=10 | | 1/x=1.8 | | 8u-u=28 | | 4^x=6 | | x-8=9x-38 | | 6z-6=7 | | 3x^2=5^x | | 9÷x=5x-3 |